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Abstract

Given a state-of-the-art deep neural network classifier,
we show the existence of a universal (image-agnostic) and
very small perturbation vector that causes natural images
to be misclassified with high probability. We propose a sys-
tematic algorithm for computing universal perturbations,
and show that state-of-the-art deep neural networks are
highly vulnerable to such perturbations, albeit being quasi-
imperceptible to the human eye. We further empirically an-
alyze these universal perturbations and show, in particular,
that they generalize very well across neural networks. The
surprising existence of universal perturbations reveals im-
portant geometric correlations among the high-dimensional
decision boundary of classifiers. It further outlines poten-
tial security breaches with the existence of single directions
in the input space that adversaries can possibly exploit to
break a classifier on most natural images.

1. Introduction

Can we find a single small image perturbation that fools
a state-of-the-art deep neural network classifier on all nat-
ural images? We show in this paper the existence of such
quasi-imperceptible universal perturbation vectors that lead
to misclassify natural images with high probability. Specif-
ically, by adding such a quasi-imperceptible perturbation
to natural images, the label estimated by the deep neu-
ral network is changed with high probability (see Fig. 1).
Such perturbations are dubbed universal, as they are image-
agnostic. The existence of these perturbations is problem-
atic when the classifier is deployed in real-world (and pos-
sibly hostile) environments, as such a single perturbation
can be exploited by adversaries to break the classifier. In-
deed, the perturbation process involves the mere addition of
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Figure 1: When added to a natural image, a universal per-
turbation image causes the image to be misclassified by the
deep neural network with high probability. Left images:
Original natural images. The labels are shown on top of
each arrow. Central image: Universal perturbation. Right
images: Perturbed images. The estimated labels of the per-
turbed images are shown on top of each arrow.
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one very small perturbation to all natural images, and can
be relatively straightforward to implement by adversaries in
real-world environments, while being relatively difficult to
detect as such perturbations are very small and thus do not
significantly affect data distributions. The surprising exis-
tence of universal perturbations further reveals new insights
on the topology of the decision boundaries of deep neural
networks. We summarize the main contributions of this pa-
per as follows:

• We show the existence of universal image-agnostic
perturbations for state-of-the-art deep neural networks.

• We propose an efficient algorithm for finding such per-
turbations. The algorithm seeks a universal perturba-
tion for a set of training points, and proceeds by aggre-
gating atomic perturbation vectors that send successive
datapoints to the decision boundary of the classifier.

• We show that universal perturbations have a remark-
able generalization property, as perturbations com-
puted for a rather small set of training points fool new
images with high probability.

• We show that such perturbations are not only univer-
sal across images, but also generalize well across deep
neural networks. Such perturbations are therefore dou-
bly universal, both with respect to the data and the net-
work architectures.

• We explain and analyze the high vulnerability of deep
neural networks to universal perturbations by examin-
ing the geometric correlation between different parts
of the decision boundary.

The robustness of image classifiers to structured and un-
structured perturbations have recently attracted a lot of at-
tention [19, 16, 20, 3, 5, 13, 14, 4]. Despite the impres-
sive performance of deep neural network architectures on
challenging visual classification benchmarks [7, 10, 21, 11],
these classifiers were shown to be highly vulnerable to per-
turbations. In [19], such networks are shown to be unsta-
ble to very small and often imperceptible additive adver-
sarial perturbations. Such carefully crafted perturbations
are either estimated by solving an optimization problem
[19, 12, 1] or through one step of gradient ascent [6], and
result in a perturbation that fools a specific data point. A
fundamental property of these adversarial perturbations is
their intrinsic dependence on datapoints: the perturbations
are specifically crafted for each data point independently.
As a result, the computation of an adversarial perturbation
for a new data point requires solving a data-dependent opti-
mization problem from scratch, which uses the full knowl-
edge of the classification model. This is different from the
universal perturbation considered in this paper, as we seek
a single perturbation vector that fools the network on most

natural images. Perturbing a new datapoint then only in-
volves the mere addition of the universal perturbation to the
image (and does not require solving an optimization prob-
lem/gradient computation). We emphasize that our notion
of universal perturbation differs from the generalization of
adversarial perturbations studied in [19], where perturba-
tions computed on the MNIST task were shown to gener-
alize well across different neural network architectures. In-
stead, we examine the existence of universal perturbations
that are common to most data points belonging to the data
distribution.

2. Universal perturbations
We formalize in this section the notion of universal per-

turbations, and propose a method for estimating such per-
turbations. Let µ denote a distribution of images in Rd, and
k̂ define a classification function that outputs for each im-
age x ∈ Rd an estimated label k̂(x). The main focus of this
paper is to seek perturbation vectors v ∈ Rd that fool the
classifier k̂ on almost all datapoints sampled from µ. That
is, we seek a vector v such that

k̂(x+ v) 6= k̂(x) for “most” x ∼ µ.

We coin such a perturbation universal, as it represents a
fixed image-agnostic perturbation that causes label change
for most images sampled from the data distribution µ. We
focus here on the case where the distribution µ represents
the set of natural images, hence containing a huge amount
of variability. In that context, we examine the existence of
very small universal perturbations (in terms of the `p norm
with p ∈ [1,∞)) that misclassify most images. The goal
is therefore to find v that satisfies the following two con-
straints:

1. ‖v‖p ≤ ξ,

2. P
x∼µ

(
k̂(x+ v) 6= k̂(x)

)
≥ 1− δ.

The parameter ξ controls the magnitude of the perturbation
vector v, and δ quantifies the desired fooling rate for all
images sampled from the distribution µ.

Algorithm. Let X = {x1, . . . , xm} be a set of images
sampled from the distribution µ. Our proposed algorithm
seeks a universal perturbation v, such that ‖v‖p ≤ ξ, while
fooling most data points inX . The proposed algorithm pro-
ceeds iteratively over the data points in X and gradually
builds the universal perturbation, as illustrated in Fig. 2. At
each iteration, the minimal perturbation ∆vi that sends the
current perturbed point, xi + v, to the decision boundary
of the classifier is computed, and aggregated to the current
instance of the universal perturbation. In more details, pro-
vided the current universal perturbation v does not fool data



point xi, we seek the extra perturbation ∆vi with minimal
norm that allows to fool data point xi by solving the follow-
ing optimization problem:

∆vi ← arg min
r
‖r‖2 s.t. k̂(xi + v + r) 6= k̂(xi). (1)

To ensure that the constraint ‖v‖p ≤ ξ is satisfied, the up-
dated universal perturbation is further projected on the `p
ball of radius ξ and centered at 0. That is, let Pp,ξ be the
projection operator defined as follows:

Pp,ξ(x0) = min
x
‖x− x0‖2 subject to ‖x0‖p ≤ ξ.

Then, our update rule is given by:

v ← Pp,ξ(v + ∆vi).

Several passes on the data set X are performed to improve
the quality of the universal perturbation. The algorithm is
terminated when the empirical “fooling rate” on the per-
turbed data set Xv := {x1 + v, . . . , xm + v} exceeds the
target threshold 1− δ. That is, we stop the algorithm when-
ever

Err(Xv) :=
1

m

m∑
i=1

1k̂(xi+v) 6=k̂(xi)
≥ 1− δ.

The detailed algorithm is provided in Algorithm 1. Note
that, in practice, the number of data points m in X need not
be large to compute a universal perturbation that is valid
for the whole distribution µ. In particular, we can set m
to be much smaller than the number of training points (see
Section 3).

The proposed algorithm involves solving at most m in-
stances of the optimization problem in Eq. (1) at each pass.
While this optimization problem is not convex when k̂ is a
standard classifier (e.g., a deep neural network), several ef-
ficient approximate methods have been devised for solving
this problem [19, 12, 8]. We use in the following the ap-
proach in [12] for its efficency. It should further be noticed
that the objective of Algorithm 1 is not to find the smallest
universal perturbation that fools most data points sampled
from the distribution, but rather to find one such perturba-
tion with sufficiently small norm. In particular, different
random shufflings of the set X naturally lead to a diverse
set of universal perturbations v satisfying the required con-
straints. The proposed algorithm can therefore be leveraged
to generate multiple universal perturbations for a deep neu-
ral network (see next section for visual examples).

3. Universal perturbations for deep nets
We now analyze the robustness of state-of-the-art deep

neural network classifiers to universal perturbations using
Algorithm 1.

∆v 1
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Figure 2: Schematic representation of the proposed algo-
rithm used to compute universal perturbations. In this illus-
tration, data points x1, x2 and x3 are super-imposed, and the
classification regions Ri are shown in different colors. Our
algorithm proceeds by aggregating sequentially the minimal
perturbations sending the current perturbed points xi + v
outside of the corresponding classification region Ri.

Algorithm 1 Computation of universal perturbations.

1: input: Data points X , classifier k̂, desired `p norm of
the perturbation ξ, desired accuracy on perturbed sam-
ples δ.

2: output: Universal perturbation vector v.
3: Initialize v ← 0.
4: while Err(Xv) ≤ 1− δ do
5: for each datapoint xi ∈ X do
6: if k̂(xi + v) = k̂(xi) then
7: Compute the minimal perturbation that

sends xi + v to the decision boundary:

∆vi ← arg min
r
‖r‖2

s.t. k̂(xi + v + r) 6= k̂(xi).

8: Update the perturbation:

v ← Pp,ξ(v + ∆vi).

9: end if
10: end for
11: end while



CaffeNet [9] VGG-F [2] VGG-16 [17] VGG-19 [17] GoogLeNet [18] ResNet-152 [7]

`2
X 85.4% 85.9% 90.7% 86.9% 82.9% 89.7%
Val. 85.6 87.0% 90.3% 84.5% 82.0% 88.5%

`∞
X 93.1% 93.8% 78.5% 77.8% 80.8% 85.4%
Val. 93.3% 93.7% 78.3% 77.8% 78.9% 84.0%

Table 1: Fooling ratios on the set X , and the validation set.

In a first experiment, we assess the estimated universal
perturbations for different recent deep neural networks on
the ILSVRC 2012 [15] validation set (50’000 images), and
report the fooling ratio, that is the proportion of images that
change labels when perturbed by our universal perturbation.
Results are reported for p = 2 and p = ∞, where we
respectively set ξ = 2000 and ξ = 10. These numerical
values were chosen in order to obtain a perturbation whose
norm is significantly smaller than the image norms, such
that the perturbation is quasi-imperceptible when added to
natural images. Results are listed in Table 1. Each result
is reported on the set X , which is used to compute the per-
turbation, as well as on the validation set (that is not used
in the process of the computation of the universal perturba-
tion). Observe that for all networks, the universal perturba-
tion achieves very high fooling rates on the validation set.
Specifically, the universal perturbations computed for Caf-
feNet and VGG-F fool more than 90% of the validation set
(when p = ∞). In other words, for any natural image in
the validation set, the mere addition of our universal per-
turbation fools the classifier more than 9 times out of 10.
This result is moreover not specific to such architectures,
as we can also find universal perturbations that cause VGG,
GoogLeNet and ResNet classifiers to be fooled on natural
images with probability edging 80%. These results have
an element of surprise, as it shows the existence of single
universal perturbation vectors that cause natural images to
be misclassified with high probability, albeit being quasi-
imperceptible to humans. To verify this latter claim, we
show visual examples of perturbed images in Fig. 3, where
the GoogLeNet architecture is used. These images are ei-
ther taken from the ILSVRC 2012 validation set (rows 1
and 2), or taken by a mobile phone camera (row 3). Ob-
serve that in most cases, the universal perturbation is quasi-
imperceptible, yet this powerful image-agnostic perturba-
tion is able to misclassify any image with high probability
for state-of-the-art classifiers. We refer to Appendix A for
the original (unperturbed) images, as well as their ground
truth labels. We visualize the universal perturbations corre-
sponding to different networks in Fig. 4. It should be noted
that such universal perturbations are not unique, as many
different universal perturbations (all satisfying the two re-
quired constraints) can be generated for the same network.
In Fig. 5, we visualize five different universal perturba-

tions obtained by using different random shufflings in X .
Observe that such universal perturbations are different, al-
though they exhibit a similar pattern. This is moreover
confirmed by computing the normalized inner products be-
tween two pairs of perturbation images, as the normalized
inner products do not exceed 0.1, which shows that one can
find diverse universal perturbations.

While the above universal perturbations are computed
for a set X of 10′000 images from the training set (i.e., in
average 10 images per class), we now examine the influence
of the size of X on the quality of the universal perturbation.
We show in Fig. 6 the fooling rates obtained on the val-
idation set for different sizes of X for GoogLeNet. Note
for example that with a set X containing only 500 images,
we can fool more than 30% of the images on the validation
set. This result is significant when compared to the num-
ber of classes in ImageNet (1′000), as it shows that we can
fool a large set of unseen images, even when using a set
X containing less than one image per class! The universal
perturbations computed using Algorithm 1 have therefore a
remarkable generalization power over unseen data points,
and can be computed on a very small set of training images.

Cross-model universality. While the computed pertur-
bations are universal across unseen data points, we now ex-
amine their cross-model universality. That is, we study to
which extent universal perturbations computed for a spe-
cific architecture (e.g., VGG-19) are also valid for another
architecture (e.g., GoogLeNet). Table 2 displays a matrix
summarizing the universality of such perturbations across
six different architectures. For each architecture, we com-
pute a universal perturbation and report the fooling ratios on
all other architectures; we report these in the rows of Table
2. Observe that, for some architectures, the universal pertur-
bations generalize very well across other architectures. For
example, universal perturbations computed for the VGG-19
network have a fooling ratio above 53% for all other tested
architectures. This result shows that our universal perturba-
tions are, to some extent, doubly-universal as they general-
ize well across data points and very different architectures.
It should be noted that, in [19], adversarial perturbations
were previously shown to generalize well, to some extent,
across different neural networks on the MNIST problem.
Our results are however different, as we show the general-
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Figure 3: Examples of perturbed images and their corresponding labels. The first two rows of images belong to the ILSVRC
2012 validations set, and the last row are random images taken by a mobile phone camera. We refer to the appendix for the
original images.

izability of universal perturbations across different architec-
tures on the ImageNet data set. This result shows that such
perturbations are of practical relevance, as they generalize
well across data points and architectures. In particular, in
order to fool a new image on an unknown neural network, a
mere addition of a universal perturbation computed on the
VGG-19 architecture is likely to misclassify the data point.

Visualization of the effect of universal perturbations.
To gain insights on the effect of universal perturbations on
natural images, we now visualize the distribution of labels
on the ImageNet validation set. Specifically, we build a di-
rected graph G = (V,E), whose vertices denote the labels,
and directed edges e = (i→ j) indicate that the majority of
images of class i are fooled into label j when applying the
universal perturbation. The existence of edges i→ j there-
fore suggests that the preferred fooling label for images of
class i is j. We construct this graph for GoogLeNet, and vi-
sualize the full graph in Appendix A for space constraints.
The visualization of this graph shows a very peculiar topol-

ogy. In particular, the graph is a union of disjoint compo-
nents, where all edges in one component mostly connect to
one target label. See Fig. 7 for an illustration of two differ-
ent connected components. This visualization clearly shows
the existence of several dominant labels, and that universal
perturbations mostly make natural images classified with
such labels. We hypothesize that these dominant labels oc-
cupy large regions in the image space, and therefore repre-
sent good candidate labels for fooling most natural images.
Note that such dominant labels are automatically found by
the algorithm to generate universal perturbations, and are
not imposed a priori in the computation of perturbations.

4. Explaining the vulnerability to universal
perturbations

The goal of this section is to analyze and explain the high
vulnerability of deep neural network classifiers to universal
perturbations. To understand the unique characteristics of
universal perturbations, we first compare such perturbations



(a) CaffeNet (b) VGG-F (c) VGG-16

(d) VGG-19 (e) GoogLeNet (f) ResNet-152

Figure 4: Universal perturbations computed for different deep neural network architectures. Images generated with p =∞,
ξ = 10. The pixel values are scaled for visibility.

Figure 5: Diversity of universal perturbations for the GoogLeNet architecture. The five perturbations are generated using
different random shufflings of the set X . Note that the normalized inner products by any pair of universal perturbations does
not exceed 0.1, which highlights the diversity of such perturbations.

with other types of perturbations, namely i) random pertur-
bation, ii) sum of adversarial perturbations over X , and iii)
mean of the images (or ImageNet bias). For each perturba-
tion, we depict a phase transition graph in Fig. 8 showing
the fooling rate on the validation set with respect to the `2
norm of the perturbation. Different perturbation norms are
then achieved by scaling accordingly each perturbation with
a multiplicative factor to have the target norm. Note that the

universal perturbation is computed for ξ = 2′000, and also
scaled accordingly.

Observe that the proposed universal perturbation quickly
reaches very high fooling rates, even when the perturbation
is constrained to be of small norm. For example, the uni-
versal perturbation computed using Algorithm 1 achieves
a fooling rate of 85% when the `2 norm is constrained to
ξ = 2′000, while other perturbations achieve much smaller



Table 2: Generalizability of the universal perturbations across different networks. The percentages indicate the fooling rates.
The rows indicate the architecture for which the universal perturbations is computed, and the columns indicate the architecture
for which the fooling rate is reported.

VGG-F CaffeNet GoogLeNet VGG-16 VGG-19 ResNet-152
VGG-F 93.7% 71.8% 48.4% 42.1% 42.1% 47.4 %
CaffeNet 74.0% 93.3% 47.7% 39.9% 39.9% 48.0%
GoogLeNet 46.2% 43.8% 78.9% 39.2% 39.8% 45.5%
VGG-16 63.4% 55.8% 56.5% 78.3% 73.1% 63.4%
VGG-19 64.0% 57.2% 53.6% 73.5% 77.8% 58.0%
ResNet-152 46.3% 46.3% 50.5% 47.0% 45.5% 84.0%

Number of images in X
500 1000 2000 4000

Fo
ol

in
g 

ra
tio

 (%
)

0

10

20

30

40

50

60

70

80

90

Figure 6: Fooling ratio on the validation set versus the car-
dinality of X . Note that even when the universal perturba-
tion is computed on a very small set X (compared to train-
ing and validation sets), the fooling ratio on the validation
set is large.

ratios for comparable norms. In particular, random vectors
sampled uniformly from the sphere of radius of 2′000 only
fool 10% of the validation set. The large difference be-
tween universal and random perturbations suggests that the
universal perturbation exploits some geometric correlations
between different parts of the decision boundary of the clas-
sifier. In fact, if the orientations of the decision boundary, in
the neighborhood of different data points, were completely
uncorrelated (and independent of the distance to the deci-
sion boundary), the norm of the best universal perturbation
would be comparable to that of a random perturbation. Note
that the latter quantity is well understood (see [5]), as the
norm of the random perturbation required to fool a specific
data point precisely behaves as Θ(

√
d‖r‖2), where d is the

dimension of the input space, and ‖r‖2 is the distance be-
tween the data point and the decision boundary (or equiv-

alently, the norm of the smallest adversarial perturbation).
For the considered ImageNet classification task, this quan-
tity is equal to

√
d‖r‖2 ≈ 2 × 104, for most data points,

which is at least one order of magnitude larger than the uni-
versal perturbation (ξ = 2′000). This substantial difference
between random and universal perturbations thereby sug-
gests redundancies in the geometry of the decision bound-
aries that we now explore.

For each image x in the validation set, we com-
pute the adversarial perturbation vector r(x) =

arg minr ‖r‖2 s.t. k̂(x + r) 6= k̂(x). It is easy to see
that r(x) is normal to the decision boundary of the clas-
sifier (at x + r(x)). The vector r(x) hence captures the
local geometry of the decision boundary in the region
surrounding the data point x. To quantify the correlation
between different regions of the decision boundary of the
classifier, we define the matrix

N =

[
r(x1)

‖r(x1)‖2
. . .

r(xn)

‖r(xn)‖2

]
of normal vectors to the decision boundaries in the vicin-
ity of data points in the validation set. For binary linear
classifiers, the decision boundary is a hyperplane, and N is
of rank 1, as all normal vectors are collinear. To capture
more generally the correlations in the decision boundary of
complex classifiers, we compute the singular values of the
matrix N . The singular values of the matrix N , computed
for the CaffeNet architecture are shown in Fig. 9. We fur-
ther show in the same figure the singular values obtained
when the columns of N are sampled uniformly at random
from the unit sphere. Observe that, while the latter singu-
lar values have a slow decay, the singular values of N de-
cay quickly, which confirms the existence of large corre-
lations and redundancies in the decision boundary of deep
networks. More precisely, this shows the existence of a sub-
space S of low dimension d′ (with d′ � d), that contains
most normal vectors to the decision boundary in regions
surrounding natural images. We hypothesize that the exis-
tence of universal perturbations fooling most natural images
is partly due to the existence of such a low-dimensional sub-
space that captures the correlations among different regions
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Figure 8: Comparison between fooling rates of different
perturbations.

of the decision boundary. In fact, this subspace “collects”
normals to the decision boundary in different regions, and
perturbations belonging to this subspace are therefore likely
to fool datapoints. To verify this hypothesis, we choose a
random vector of norm ξ = 2′000 belonging to the sub-
space S spanned by the first 100 singular vectors, and com-
pute its fooling ratio on a different set of images (i.e., a set
of images that have not been used to compute the SVD).
Such a perturbation can fool nearly 38% of these images,
thereby showing that a random direction in this well-sought
subspace S significantly outperform random perturbations
(we recall that such perturbations can only fool 10% of the
data). Fig. 10 illustrates the subspace S that captures the
correlations in the decision boundary. It should further be
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Figure 9: Singular values of matrix N containing normal
vectors to the decision decision boundary.

noted that the existence of this low dimensional subspace
further explains the surprising generalization properties of
universal perturbations obtained in Fig. 6, where one can
build relatively generalizable universal perturbations with
only 500 images (less than one image per class).

Unlike the above experiment, the proposed algorithm
does not choose a random vector in this subspace, but rather
chooses a specific direction in order to maximize the over-
all fooling rate. This explains the gap between the fooling
rates obtained with the random vector strategy in S and Al-
gorithm 1, respectively.



Figure 10: Illustration of the low dimensional subspace
S containing normal vectors to the decision boundary in
regions surrounding natural images. For the purpose of
this illustration, we super-impose three data-points {xi}3i=1,
and the adversarial perturbations {ri}3i=1 that send the re-
spective datapoints to the decision boundary {Bi}3i=1 are
shown. Note that {ri}3i=1 all live in the subspace S.

5. Conclusions
We showed the existence of small universal perturba-

tions that can fool state-of-the-art classifiers on natural im-
ages. We proposed an iterative algorithm to generate uni-
versal perturbations, and highlighted several properties of
such perturbations. In particular, we showed that universal
perturbations generalize well across different classification
models, resulting in doubly-universal perturbations (image-
agnostic, network-agnostic). We further explained the ex-
istence of such perturbations with the correlation between
different regions of the decision boundary. This provides
insights on the geometry of the decision boundaries of deep
neural networks, and contributes to a better understanding
of such systems. A theoretical analysis of the geometric
correlations between different parts of the decision bound-
ary will be the subject of future research.
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A. Appendix
Fig. 11 shows the original images corresponding to the experiment in Fig. 3. Fig. 12 visualizes the graph showing

relations between original and perturbed labels (see Section 3 for more details).

Bouvier des Flandres Christmas stocking Scottish deerhound ski mask

porcupine killer whale European fire salamander toyshop

fox squirrel pot Arabian camel coffeepot

Figure 11: Original images. The first two rows are randomly chosen images from the validation set, and the last row of
images are personal images taken from a mobile phone camera.
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Figure 12: Graph representing the relation between original and perturbed labels. Note that “dominant labels” appear
systematically. Please zoom for readability. Isolated nodes are removed from this visualization for readability.


